論文一覧

Google Scholar:  https://scholar.google.com/citations?user=b2yDGpwAAAAJ&hl=en

(学術論文のみ)

Publication List

  1. Angle Dependence of Nematic Liquid Crystal Dynamics with Conical Boundary Condition
    Yukihiro OKUNO, Hiroo FUKUNAGA, Mitsuyoshi ICHIHASHI, and Hiroyasu TOYOKI
    Jpn. J. Appl. Phys. 47, 4643-4650 (2008).
  2. A two-dimensional CA model for traffic flow with car origin and destination
    Junji In-nami and Hiroyasu Toyoki
    Physica A, 378, 485-497 (2007).
  3. Phase ordering simulation of one-dimensional conserved kink system
    Hiroyasu Toyoki and Tomoyuki Nagaya
    Phys. Rev. E 70, 067201 (2004).
  4. Jamming transitions in a two-dimensional cellular automaton model of cars with finite trip length
    Junji In-nami and Hiroyasu Toyoki
    “IFAC Control in Transportation Systems”, 389 (2004).
  5. Non-power-law tail of structure factor in the large-n O(n)
    model
    Hiroyasu Toyoki
    CP469, “Slow Dynamics in Complex Systems: 8th Tohwa Univ. Int. Sympo.” (AIP,
    1999), 215.
  6. Boundary Effects for Macroscopic Patterns in Nematic Thin Layers
    under a Hybrid Condition
    Hiroyasu Toyoki
    J. Phys. Soc. Jpn. 67, 3061(1998).
  7. Modulated Patterns in Nematic Thin Layers under a Hybrid Boundary
    Condition
    H. Toyoki
    STATISTICAL PHYSICS — Proceedings of the 2nd Tohwa University
    International meeting –, M. Tokuyama and I. Oppenheim, eds., (World
    Scientific, 1998), 143.
  8. Formation and Dynamics of Boojums in the Thin Layers
    of Nematics with Hybrid Boundary Conditions
    H. Toyoki
    物性研究 66 (1996), 618
    (第1回東和大学国際研究会
    「統計物理学理論、実験、計算機シュミレーション」の報告集)
  9. Motion of Defects in the Phase Ordering Process of
    Nematic Liquid Crystals
    Hiroyasu Toyoki
    J. Phys. Soc. Jpn. 63 (1994), 4446.
  10. Phase Ordering Dynamis and Topological Defects in Nonconserved Systems
    with Continuous Symmetry
    H. Toyoki
    in Formation, Dynamics and Statistics of Patterns Vol.2, edited
    by K. Kawasaki and M. Suzuki, pp309–350 (World Scientific, 1993).
  11. Phase ordering simulation of vector order-parameters without singular
    defects
    H. Toyoki
    Mod. Phys. Lett. B7 (1993), 397.
  12. Cell dynamical simulation for the phase ordering of nematics
    H. Toyoki
    Phys. Rev. E47 (1993), 2558.
  13. Structure factors of vector-order-parameter systems containing random
    topological defects
    H. Toyoki
    Phys. Rev. B45 (1992), 1965.
  14. Vortex Dynamics in the Ordering Process of the Three-Dimensional
    Planar System
    H. Toyoki
    J. Phys. Soc. Jpn 60(1991), 1433.
  15. Cell Dynamical Approach to the Ordering Process of the Three-Dimensional
    Heiseberg System
    H. Toyoki
    J. Phys. Soc. Jpn 60 (1991), 1153.
  16. Annihilation Kinetics of Particle-Antiparticle Systems with
    Long-range interaction
    H. Toyoki
    in Dynamics and Patterns in Complex Fluids edited by
    A. Onuki and K. Kawasaki, pp182–183 (Springer, 1990).
  17. Pair annihilation of pointlike topological defects in the ordering
    processes of quenched systems
    H. Toyoki
    Phys. Rev. A42 (1990), 911.
  18. 点状の位相的欠陥をもつ系の秩序化過程における自己相似性
    豊木博泰
    統計数理 37 (1989), 89.
  19. Growth law of order-parameter fluctuation in a random
    interface system
    H. Toyoki
    Phys. Rev. B38 (1988), 11904.
  20. Molecular Dynamics of Vortex-Points in the Growth Process of
    a Quenched Complex Field.
    H. Toyoki
    in Dynamics of Ordering Processes in Condensed Matter edited by
    S. Komura and H. Furukawa, pp.173–178
    (Plenum, New York, 1988).
  21. Fractal Dimensionality of the Reversible Diffusion-Limited
    Aggregation: New Aspect of Equilibrium Patterns.
    K. Honda and H. Toyoki
    J. Phys. Soc. Japan 57 (1988), 1186.
  22. Ordering Dynamics of a Deeply Quenched Complex Field.
    H. Toyoki and K. Honda
    Prog. Theor. Phys. 78 (1987), 237.
  23. Generalization and the Fractal Dimensionality of Diffusion-Limited Aggregation.
    M.Matsushita, K. Honda, H. Toyoki, Y.Hayakawa and H. Kondo.
    J. Phys. Soc. Japan 55 (1986), 2618.
  24. Dynamics of Random Interfaces with a Nonzero Initial Order
    Parameter.
    H. Toyoki and K. Honda
    in Science on Form: Proceedings of the First International
    Symposium for Science on Form edited by Y. Kato, R. Takaki, and
    J. Toriwaki, pp.77–84 (KTK Scientific Pub., Tokyo, 1986)
  25. A Theory of Fractal Dimensionality for Generalized
    Diffusion-Limited Aggregation.
    K. Honda, H. Toyoki and M.Matsushita.
    J. Phys. Soc. Japan 55 (1986), 707.
  26. Systematic Deviation from Scaling in the Dynamics of a Random
    Interface: Case for a Nonzero Initial Order Parameter.
    H. Toyoki and K. Honda
    Phys. Rev. B33 (1986), 385.
  27. The Motion of Interfaces and the Similarity Dimension.
    H. Toyoki and K. Honda
    Phys. Lett. 111A (1985), 367.
  28. Commensurate, Incommensurate and Chaotic Phase in DNA Double
    Helices.
    H. Toyoki, S. Yomosa, S.Takeno and S.Homma
    Phys. Lett. 97A (1983), 70.

コメントを残す